Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.989
Filtrar
1.
PeerJ ; 12: e17223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618573

RESUMO

Background: The beet armyworm, Spodoptera exigua (Hübner), is an important agricultural pest worldwide that has caused serious economic losses in the main crop-producing areas of China. To effectively monitor and control this pest, it is crucial to investigate its population dynamics and seasonal migration patterns in northern China. Methods: In this study, we monitored the population dynamics of S. exigua using sex pheromone traps in Shenyang, Liaoning Province from 2012 to 2022, combining these data with amigration trajectory simulation approach and synoptic weather analysis. Results: There were significant interannual and seasonal variations in the capture number of S. exigua, and the total number of S. exigua exceeded 2,000 individuals in 2018 and 2020. The highest and lowest numbers of S. exigua were trapped in September and May, accounting for 34.65% ± 6.81% and 0.11% ± 0.04% of the annual totals, respectively. The average occurrence period was 140.9 ± 9.34 days during 2012-2022. In addition, the biomass of S. exigua also increased significantly during these years. The simulated seasonal migration trajectories also revealed varying source regions in different months, primarily originated from Northeast China and East China. These unique insights into the migration patterns of S. exigua will contribute to a deeper understanding of its occurrence in northern China and provide a theoretical basis for regional monitoring, early warning, and the development of effective management strategies for long-range migratory pests.


Assuntos
Agricultura , Humanos , Animais , Spodoptera , Estações do Ano , Dinâmica Populacional , China/epidemiologia
2.
PeerJ ; 12: e17087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623496

RESUMO

Background: Spodoptera frugiperda (FAW) is a pest that poses a significant threat to corn production worldwide, causing millions of dollars in losses. The species has evolved into two strains (corn and rice) that differ in their genetics, reproductive isolation, and resistance to insecticides and Bacillus thuringiensis endotoxins. The microbiota plays an important role in insects' physiology, nutrient acquisition, and response to chemical and biological controls. Several studies have been carried out on FAW microbiota from larvae guts using laboratory or field samples and a couple of studies have analyzed the corn strain microbiota across its life cycle. This investigation reveals the first comparison between corn strain (CS) and rice strain (RS) of FAW during different developmental insect stages and, more importantly, endosymbiont detection in both strains, highlighting the importance of studying both FAW populations and samples from different stages. Methods: The composition of microbiota during the life cycle of the FAW corn and rice strains was analyzed through high-throughput sequencing of the bacterial 16S rRNA gene using the MiSeq system. Additionally, culture-dependent techniques were used to isolate gut bacteria and the Transcribed Internal Spacer-ITS, 16S rRNA, and gyrB genes were examined to enhance bacterial identification. Results: Richness, diversity, and bacterial composition changed significantly across the life cycle of FAW. Most diversity was observed in eggs and males. Differences in gut microbiota diversity between CS and RS were minor. However, Leuconostoc, A2, Klebsiella, Lachnoclostridium, Spiroplasma, and Mucispirilum were mainly associated with RS and Colidextribacter, Pelomonas, Weissella, and Arsenophonus to CS, suggesting that FAW strains differ in several genera according to the host plant. Firmicutes and Proteobacteria were the dominant phyla during FAW metamorphosis. Illeobacterium, Ralstonia, and Burkholderia exhibited similar abundancies in both strains. Enterococcus was identified as a conserved taxon across the entire FAW life cycle. Microbiota core communities mainly consisted of Enterococcus and Illeobacterium. A positive correlation was found between Spiroplasma with RS (sampled from eggs, larvae, pupae, and adults) and Arsenophonus (sampled from eggs, larvae, and adults) with CS. Enterococcus mundtii was predominant in all developmental stages. Previous studies have suggested its importance in FAW response to B. thuringensis. Our results are relevant for the characterization of FAW corn and rice strains microbiota to develop new strategies for their control. Detection of Arsenophonus in CS and Spiroplasma in RS are promising for the improvement of this pest management, as these bacteria induce male killing and larvae fitness reduction in other Lepidoptera species.


Assuntos
Bacillus thuringiensis , Microbiota , Oryza , Animais , Masculino , Spodoptera/genética , Zea mays/genética , Oryza/genética , RNA Ribossômico 16S/genética , Estágios do Ciclo de Vida , Larva/genética , Bacillus thuringiensis/genética , Microbiota/genética
3.
J Agric Food Chem ; 72(15): 8423-8433, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565327

RESUMO

Trehalases (TREs) are pivotal enzymes involved in insect development and reproduction, making them prime targets for pest control. We investigated the inhibitory effect of three thiazolidinones with piperine skeletons (6a, 7b, and 7e) on TRE activity and assessed their impact on the growth and development of the fall armyworm (FAW), Spodoptera frugiperda. The compounds were injected into FAW larvae, while the control group was treated with 2% DMSO solvent. All three compounds effectively inhibited TRE activity, resulting in a significant extension of the pupal development stage. Moreover, the treated larvae exhibited significantly decreased survival rates and a higher incidence of abnormal phenotypes related to growth and development compared to the control group. These results suggest that these TRE inhibitors affect the molting of larvae by regulating the chitin metabolism pathway, ultimately reducing their survival rates. Consequently, these compounds hold potential as environmentally friendly insecticides.


Assuntos
Alcaloides , Benzodioxóis , Inseticidas , Piperidinas , Alcamidas Poli-Insaturadas , Trealase , Animais , Larva , Spodoptera , Trealase/genética , Inseticidas/farmacologia
4.
PLoS One ; 19(4): e0294863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630672

RESUMO

Diversity analysis using molecular markers serves as a powerful tool in unravelling the intricacies of inclusivity within various populations and is an initial step in the assessment of populations and the development of inbred lines for host plant resistance in maize. This study was conducted to assess the genetic diversity and population structure of 242 newly developed S3 inbred lines using 3,305 single nucleotide polymorphism (SNP) markers and to also assess the level of homozygosity achieved in each of the inbred lines. A total of 1,184 SNP markers were found highly informative, with a mean polymorphic information content (PIC) of 0.23. Gene diversity was high among the inbred lines, ranging from 0.04 to 0.50, with an average of 0.27. The residual heterozygosity of the 242 S3 inbred lines averaged 8.8%, indicating moderately low heterozygosity levels among the inbred lines. Eighty-four percent of the 58,322 pairwise kinship coefficients among the inbred lines were near zero (0.00-0.05), with only 0.3% of them above 0.50. These results revealed that many of the inbred lines were distantly related, but none were redundant, suggesting each inbred line had a unique genetic makeup with great potential to provide novel alleles for maize improvement. The admixture-based structure analysis, principal coordinate analysis, and neighbour-joining clustering were concordant in dividing the 242 inbred lines into three subgroups based on the pedigree and selection history of the inbred lines. These findings could guide the effective use of the newly developed inbred lines and their evaluation in quantitative genetics and molecular studies to identify candidate lines for breeding locally adapted fall armyworm tolerant varieties in Ghana and other countries in West and Central Africa.


Assuntos
Polimorfismo de Nucleotídeo Único , Zea mays , Animais , Zea mays/genética , Spodoptera , Genótipo , Melhoramento Vegetal , Variação Genética
5.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611746

RESUMO

Spodoptera frugiperda, the fall armyworm (FAW), is a highly invasive polyphagous insect pest that is considered a source of severe economic losses to agricultural production. Currently, the majority of chemical insecticides pose tremendous threats to humans and animals besides insect resistance. Thus, there is an urgent need to develop new pest management strategies with more specificity, efficiency, and sustainability. Chitin-degrading enzymes, including chitinases, are promising agents which may contribute to FAW control. Chitinase-producing microorganisms are reported normally in bacteria and fungi. In the present study, Serratia marcescens was successfully isolated and identified from the larvae of Spodoptera frugiperda. The bacterial strain NRC408 displayed the highest chitinase enzyme activity of 250 units per milligram of protein. Subsequently, the chitinase gene was cloned and heterologously expressed in E. coli BL21 (DE3). Recombinant chitinase B was overproduced to 2.5-fold, driven by the T7 expression system. Recombinant chitinase B was evaluated for its efficacy as an insecticidal bioagent against S. frugiperda larvae, which induced significant alteration in subsequent developmental stages and conspicuous malformations. Additionally, our study highlights that in silico analyses of the anticipated protein encoded by the chitinase gene (ChiB) offered improved predictions for enzyme binding and catalytic activity. The effectiveness of (ChiB) against S. frugiperda was evaluated in laboratory and controlled field conditions. The results indicated significant mortality, disturbed development, different induced malformations, and a reduction in larval populations. Thus, the current study consequently recommends chitinase B for the first time to control FAW.


Assuntos
Quitinases , Inseticidas , Animais , Humanos , Quitinases/genética , Quitinases/farmacologia , Larva , Serratia marcescens/genética , Zea mays , Spodoptera , Escherichia coli , Clonagem Molecular , Produtos Agrícolas , Inseticidas/farmacologia
6.
Pestic Biochem Physiol ; 200: 105832, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582595

RESUMO

Moth insects rely on sex pheromones for long distance attraction and searching for sex partners. The biosynthesis of moth sex pheromones involves the catalytic action of multiple enzymes, with desaturases playing a crucial role in the process of carbon chain desaturation. However, the specific desaturases involved in sex pheromone biosynthesis in fall armyworm (FAW), Spodoptera frugiperda, have not been clarified. In this study, a Δ11 desaturase (SfruDES1) gene in FAW was knocked out using the CRISPR/Cas9 genome editing system. A homozygous mutant of SfruDES1 was obtained through genetic crosses. The gas chromatography-mass spectrometry (GC-MS) analysis results showed that the three main sex pheromone components (Z7-12:Ac, Z9-14:Ac, and Z11-16:Ac) and the three minor components (Z9-14:Ald, E11-14:Ac and Z11-14:Ac) of FAW were not detected in homozygous mutant females compared to the wild type. Furthermore, behavioral assay demonstrated that the loss of SfruDES1 resulted in a significant reduction in the attractiveness of females to males, along with disruptions in mating behavior and oviposition. Additionally, in a heterologous expression system, recombinant SfruDES1 could introduce a cis double bond at the Δ11 position in palmitic acid, which resulted in the changes in components of the synthesized products. These findings suggest desaturase plays a key role in the biosynthesis of sex pheromones, and knockout of the SfruDES1 disrupts sex pheromone biosynthesis and mating behavior in FAW. The SfruDES1 could serve as tool to develop a control method for S. frugiperda.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Feminino , Masculino , Spodoptera/genética , Spodoptera/metabolismo , Atrativos Sexuais/metabolismo , Oviposição , Mariposas/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/metabolismo
7.
Pestic Biochem Physiol ; 200: 105827, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582591

RESUMO

In addition to the acute lethal toxicity, insecticides might affect population dynamics of insect pests by inducing life history trait changes under low concentrations, however, the underlying mechanisms remain not well understood. Here we examined systemic impacts on development and reproduction caused by low concentration exposures to cyantraniliprole in the fall armyworm (FAW), Spodoptera frugiperda, and the putative underlying mechanisms were investigated. The results showed that exposure of third-instar larvae to LC10 and LC30 of cyantraniliprole significantly extended larvae duration by 1.46 and 5.41 days, respectively. Treatment with LC30 of cyantraniliprole significantly decreased the pupae weight and pupation rate as well as the longevity, fecundity and egg hatchability of female adults. Consistently, we found that exposure of FAW to LC30 cyantraniliprole downregulated the mRNA expression of four ecdysteroid biosynthesis genes including SfNobo, SfShd, SfSpo and SfDib and one ecdysone response gene SfE75 in the larvae as well as the gene encoding vitellogenin (SfVg) in the female adults. We also found that treatment with LC30 of cyantraniliprole significantly decreased the whole body levels of glucose, trehalose, glycogen and triglyceride in the larvae. Our results indicate that low concentration of cyantraniliprole inhibited FAW development by disruption of ecdysteroid biosynthesis as well as carbohydrate and lipid metabolism, which have applied implications for the control of FAW.


Assuntos
Ecdisteroides , Inseticidas , Pirazóis , ortoaminobenzoatos , Animais , Spodoptera , Metabolismo dos Lipídeos , Larva , Inseticidas/toxicidade , Carboidratos
8.
Pestic Biochem Physiol ; 200: 105839, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582601

RESUMO

Lepidopteran insects are refractory to RNA interference (RNAi) response, especially to orally delivered double-stranded RNA (dsRNA). High nuclease activity in the midgut lumen is proposed as one of the major reasons for RNAi insensitivity. We identified three dsRNase genes highly expressed in the midgut of fall armyworm (FAW), Spodoptera frugiperda. The genomic region harboring those three dsRNase genes was deleted using the CRISPR-Cas9-mediated genome editing method. A homozygous line with deletion of three dsRNase genes was produced. dsRNA degradation by midgut lumen contents of mutant larvae was lower than in wild-type larvae. Feeding dsRNA targeting the inhibitor of apoptosis (IAP) gene increased knockdown of the target gene and mortality in mutants compared to wild-type larvae. These results suggest that dsRNases in the midgut contribute to RNAi inefficiency in FAW. Formulations that protect dsRNA from dsRNase degradation may improve RNAi efficiency in FAW and other lepidopteran insects.


Assuntos
Sistemas CRISPR-Cas , RNA de Cadeia Dupla , Animais , Interferência de RNA , Spodoptera/genética , Spodoptera/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Insetos/genética , Larva/genética , Larva/metabolismo
9.
Pestic Biochem Physiol ; 199: 105777, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458684

RESUMO

The fall armyworm (Spodoptera frugiperda) is a major global pest causing severe damage to various crops, especially corn. Transgenic corn producing the Cry1F pesticidal protein from the bacterium Bacillus thuringiensis (Cry1F corn) showed effectiveness in controlling this pest until S. frugiperda populations at locations in North and South America evolved practical resistance. The mechanism for practical resistance involved disruptive mutations in an ATP binding cassette transporter subfamily C2 gene (SfABCC2), which serves as a functional Cry1F receptor in the midgut cells of susceptible S. frugiperda. The SfABCC2 protein contains two transmembrane domains (TMD1 and TMD2), each with a cytosolic nucleotide (ATP) binding domain (NBD1 and NBD2, respectively). Previous reports have demonstrated that disruptive mutations in TMD2 were linked with resistance to Cry1F, yet whether the complete SfABCC2 structure is needed for receptor functionality or if a single TMD-NBD protein can serve as functional Cry1F receptor remains unknown. In the present study, we separately expressed TMD1 and TMD2 with their corresponding NBDs in cultured insect cells and tested their Cry1F receptor functionality. Our results show that the complete SfABCC2 structure is required for Cry1F receptor functionality. Moreover, binding competition assays revealed that Cry1F specifically bound to SfABCC2, whereas neither SfTMD1-NBD1 nor SfTMD2-NBD2 exhibited any significant binding. These results provide insights into the molecular mechanism of Cry1F recognition by SfABCC2 in S. frugiperda, which could facilitate the development of more effective insecticidal proteins.


Assuntos
Bacillus thuringiensis , Endotoxinas , Animais , Spodoptera , Endotoxinas/genética , Resistência a Inseticidas/genética , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacillus thuringiensis/metabolismo , Zea mays , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas/genética
10.
Pestic Biochem Physiol ; 199: 105771, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458679

RESUMO

Among the six-membered heterocycles, the pyrazine ring is poorly explored in crop protection and does not feature in any product listed in the current IRAC MoA classification. In an effort to identify new leads for internal research, we synthesized a series of N-(5-phenylpyrazin-2-yl)-benzamide derivatives and evaluated them for their insecticidal activity. N-(5-phenylpyrazin-2-yl)-benzamide derivatives 3 were prepared using an automated two-step synthesis protocol. These compounds were tested for their initial biological activity against a wide range of sucking and chewing insect pests and found to be active against lepidopterans only. More detailed experiments, including symptomology studies on the diamondback moth, Plutella xylostella (L.) and the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) showed that analog 3q causes severe abnormalities in the lepidopteran cuticle leading to larval mortality. Compound 3q shows strong potency against both P. xylostella and S. littoralis, whereas analog 3i shows better potency against S. littoralis causing also impaired cuticular structure and death of the larvae. Additionally, P. xylostella genetic studies showed that compound 3q resistance is linked to Chitin Synthase 1. Our studies show that N-(5-phenylpyrazin-2-yl)-benzamide derivatives 3, and in particular analogs 3i and 3q, act as insect growth modulator insecticides. Conformational similarities with lufenuron are discussed.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Mariposas/genética , Larva , Insetos , Spodoptera , Quitina
11.
Plant Cell Rep ; 43(4): 94, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472660

RESUMO

KEY MESSAGE: Taxadiene synthase, taxadiene-5α-hydroxylase, and taxane 13α-hydroxylase genes were introduced into Nicotiana benthamiana, and the improved resistance to lepidoptera pest fall armyworm was reported. Fall armyworm (FAW) is a serious agricultural pest. Genetic engineering techniques have been used to create pest-resistant plant varieties for reducing pest damage. Paclitaxel is a diterpenoid natural metabolite with antineoplastic effects in medicine. However, the effects of taxanes on the growth and development of lepidoptera pests, such as the FAW, are unknown. Here, selected paclitaxel precursor biosynthesis pathway genes, taxadiene synthase, taxane 5α-hydroxylase, and taxane 13α-hydroxylase, were engineered in the heterologous host Nicotiana benthamiana plants. Bioassay experiments showed that the transgenic N. benthamiana plants displayed improved resistance to FAW infestation, with degeneration of gut tissues and induced expression of apoptosis-related genes. Cytotoxicity experiment showed that the paclitaxel precursor, 10-deacetylbaccatin III, is cytotoxic to Sf9 cells, causing cell cycle arrest at the G2/M phase and disorder of the cytoskeleton. Metabolome analysis showed that heterologous expression of taxane genes in N. benthamiana affected the digestive system, steroid hormone and purine metabolism pathways of FAW larvae. In summary, this study provides a candidate approach for FAW control.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Tabaco , Taxoides , Animais , Spodoptera , Taxoides/metabolismo , Taxoides/farmacologia , Paclitaxel/farmacologia , Plantas Geneticamente Modificadas/metabolismo , Larva
12.
J Agric Food Chem ; 72(13): 6889-6899, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512131

RESUMO

Spodoptera frugiperda is primarily controlled through chemical insecticides. Our RNA-seq data highlight the overexpression of GSTs4 in indoxacarb-resistant S. frugiperda. However, the exact role of GSTs4 in indoxacarb resistance and its regulatory mechanisms remains elusive. Therefore, we investigated the functional role of GSTs4 in S. frugiperda and explored the underlying post-transcriptional regulatory mechanisms. GSTs4 was highly overexpressed (27.6-fold) in the indoxacarb-resistant strain, and GSTs4 silencing significantly increases the susceptibility of S. frugiperda to indoxacarb, increasing mortality by 27.3%. miR-317-3p and miR-283-5p can bind to the 3'UTR of GSTs4, and the targeting relationship was confirmed by dual-luciferase reporter assays. Injecting miR-317-3p and miR-283-5p agomirs reduces GSTs4 levels by 64.8 and 42.3%, respectively, resulting in an increased susceptibility of S. frugiperda to indoxacarb. Conversely, the administration of miR-317-3p and miR-283-5pantagomirs increases GSTs4 expression and reduces larval susceptibility to indoxacarb. These findings demonstrate that miR-317-3p and miR-283-5p contribute to indoxacarb resistance in S. frugiperda by regulating the overexpression of GSTs4.


Assuntos
Inseticidas , MicroRNAs , Animais , Spodoptera/genética , Spodoptera/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Inseticidas/farmacologia , Oxazinas
13.
Curr Biol ; 34(7): 1414-1425.e5, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38479388

RESUMO

To extract any adaptive benefit, the circadian clock needs to be synchronized to the 24-h day-night cycles. We have investigated if it is a general property of the brain's circadian clock to recognize social interactions as external time givers. Sociosexual interactions with the opposite sex are universal, prevalent even in the lives of solitary animals. The solitary adult life of the Spodoptera littoralis moth is singularly dedicated to sex, offering an ideal context for exploring the impact of sociosexual cues on circadian timekeeping. We have identified specific olfactory cues responsible for social entrainment, revealing a surprisingly strong influence of pheromone-mediated remote sociosexual interactions on circadian rhythms. Males' free-running rhythms are induced and synchronized by the sex pheromone that the female releases in a rhythmic fashion, highlighting a hierarchical relation between the female and male circadian oscillators. Even a single pulse of the sex pheromone altered clock gene expression in the male brain, surpassing the effect of light on the clock. Our finding of a daytime-dependent, lasting impact of pheromone on male's courtship efficacy indicates that circadian timing in moths is a trait under sexual selection. We have identified specific components of the sex-pheromone blend that lack mate-attractive property but have powerful circadian effects, providing rationale for their continued retention by the female. We show that such volatiles, when shared across sympatric moth species, can trigger communal synchronization. Our results suggest that the sex pheromone released by female moths entrains males' behavioral activity rhythm to ensure synchronized timing of mating.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Masculino , Feminino , Spodoptera , Feromônios/metabolismo , Atrativos Sexuais/metabolismo , Ritmo Circadiano/genética
14.
Physiol Plant ; 176(2): e14243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467539

RESUMO

Seed priming with beneficial endophytic fungi is an emerging sustainable strategy for enhancing plant resistance against insect pests. This study examined the effects of Beauvaria bassiana Bb20091317 and Metarhizium rileyi MrCDTLJ1 fungal colonization on maize growth, defence signalling, benzoxazinoid levels and gene expression. The colonization did not adversely affect plant growth but reduced larval weights of Spodoptera frugiperda. Maize leaves treated with M. rileyi exhibited higher levels of jasmonic acid, jasmonoyl-Isoleucine, salicylic acid, and indole acetic acid compared to control. B. bassiana and M. rileyi accelerated phytohormone increase upon S. frugiperda herbivory. Gene expression analysis revealed modulation of benzoxazinoid biosynthesis genes. We further elucidated the immune regulatory role of the transcription factor zmWRKY36 using virus-induced gene silencing (VIGS) in maize. zmWRKY36 positively regulates maize immunity against S. frugiperda, likely by interacting with defense-related proteins. Transient overexpression of zmWRKY36 in tobacco-induced cell death, while silencing in maize reduced chitin-triggered reactive oxygen species burst, confirming its immune function. Overall, B. bassiana and M. rileyi successfully colonized maize, impacting larval growth, defense signalling, and zmWRKY36-mediated resistance. This sheds light on maize-endophyte-insect interactions for sustainable plant protection.


Assuntos
Benzoxazinas , Zea mays , Animais , Spodoptera/fisiologia , Zea mays/genética , Zea mays/metabolismo , Benzoxazinas/metabolismo , Benzoxazinas/farmacologia , Herbivoria , Larva/fisiologia , Fungos
15.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513149

RESUMO

Gut microbiota plays a functional role in nutrition among several insects. However, the situation is unclear in Lepidoptera. Field studies suggest the microbiome may not be stable and is determined by diet, while in the laboratory, Lepidoptera are routinely reared on diet containing antibiotics with unknown effects on microbial communities. Furthermore, molecular approaches for the characterization of lepidopteran microbiomes rarely describe the metabolically active gut bacteria. The aim of this study was to evaluate how diet and antibiotics affect Spodoptera exigua (Hübner) growth and the diversity and activity of the gut bacteria community. We assessed how alfalfa and wheat germ-based diets affected larval growth, in the presence and absence of streptomycin. Alfalfa diet improved larval growth, pupal mass, and survival, but antibiotic was only beneficial in the wheat germ diet. We observed diet-driven changes in the gut bacterial communities. In the active community, the alfalfa colony was dominated by Enterococcus and Rhodococcus whereas in the wheat germ colony, only Enterococcus was present. In contrast, spore-forming Bacilli species were very common members of the DNA community. In both cases, streptomycin had a selective effect on the relative abundance of the taxa present. Our study highlights the importance of characterizing both the diversity and activity of the gut microbiota community. DNA-derived communities may include environmental DNA, spores, or non-viable bacteria, while RNA-derived communities are more likely to give an accurate representation of the diversity of active members that are potentially directly involved in the metabolic processes of the host.


Assuntos
Mariposas , Animais , Spodoptera/genética , Mariposas/genética , Bactérias , Larva , Antibacterianos/farmacologia , Estreptomicina/farmacologia , Dieta , DNA/farmacologia
16.
Sci Rep ; 14(1): 6143, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480844

RESUMO

Quantitative real-time polymerase chain reaction (qRT-PCR) has become a commonly used method for the quantification of gene expression. However, accurate qRT-PCR analysis requires a valid internal reference for data normalization. To determine the valid reference characterized with low expression variability among Spodoptera litura samples after microbial pesticide treatments, nine housekeeping genes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), arginine kinase, ubiquitin C, actin-5C (ACT5C), actin, ribosomal protein S13 (RPS13), tubulin, acidic ribosomal protein P0 (RPLP0) and ubiquinol-cytochrome c reductase, were evaluated for their suitability using geNorm, Normfinder, BestKeeper, RefFinder and the comparative delta CT methods in this study. S. litura larvae after direct treatment (larvae were immersed in biopesticides), indirect treatment (larvae were fed with biopesticide immersed artificial diets) and comprehensive treatment (larvae were treated with the first two treatments in sequence), respectively with Metarhizium anisopliae, Empedobacter brevis and Bacillus thuringiensis, were investigated. The results indicated that the best sets of internal references were as follows: RPLP0 and ACT5C for direct treatment conditions; RPLP0 and RPS13 for indirect treatment conditions; RPS13 and GAPDH for comprehensive treatment conditions; RPS13 and RPLP0 for all the samples. These results provide valuable bases for further genetic researches in S. litura.


Assuntos
Actinas , Perfilação da Expressão Gênica , Animais , Spodoptera/genética , Actinas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Gliceraldeído-3-Fosfato Desidrogenases/genética , Expressão Gênica
17.
Sci Rep ; 14(1): 7118, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532112

RESUMO

Invasive alien species (IAS) pose a severe threat to global agriculture, with their impact projected to escalate due to climate change and expanding international trade. The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), a native of the Americas, has rapidly spread across various continents, causing significant damage to several food crops, especially maize. Integrated pest management (IPM) programs are vital for sustainable FAW control, combining multiple strategies for sustainable results. Over three consecutive years, 2019-20, 2020-21 and 2021-22, the field demonstrations were conducted in semiarid regions of India, testing a four-component IPM approach viz., pheromone traps, microbial, botanicals and ETL based applications of insecticides against farmers' practices (sole insecticide application). IPM implementation led to substantial reductions in FAW infestation. Furthermore, egg mass and larvae infestations were significantly lower in IPM-adopted villages compared to conventional practices. Pheromone-based monitoring demonstrated a consistent reduction in adult moth populations. The lowest technology gap (10.42), extension gap (8.33) and technology index (12.25) was recorded during 2020-21. The adoption of IPM led to increased maize yields (17.49, 12.62 and 24.87% over control), higher net returns (919, 906.20 and 992.93 USD), and favourable benefit-cost ratios (2.74, 2.39 and 2.33) compared to conventional practices respectively during 2019-20, 2020-21 and 2021-22. The economic viability of IPM strategies was evident across three consecutive years, confirming their potential for sustainable FAW management in the semiarid region of India. These strategies hold promise for adoption in other parts of the world sharing similar climatic conditions.


Assuntos
Fazendeiros , Inseticidas , Animais , Humanos , Spodoptera , Zea mays , Comércio , Internacionalidade , Controle de Pragas , Índia , Feromônios
18.
Sci Total Environ ; 923: 171504, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460690

RESUMO

Insect-plant interactions are among importantly ecological processes, and rapid environmental changes such as temperature and resource fluctuations can disrupt long-standing insect-plant interactions. While individual impacts of climate warming, atmospheric nitrogen (N) deposition, and plant provenance on insect-plant interactions are well studied, their joint effects on insect-plant interactions are less explored in ecologically realistic settings. To this end, we performed five experiments with native and invasive Solidago canadensis populations from home and introduced ranges and two insect herbivores (leaf-chewing Spodoptera litura and sap-sucking Corythucha marmorata) in the context of climate warming and N deposition. We determined leaf defensive traits, feeding preference, and insect growth and development, and quantified the possible associations among climate change, host-plant traits, and insect performance with structural equation modeling. First, native S. canadensis populations experienced higher damage by S. litura but lower damage by C. marmorata than invasive S. canadensis populations in the ambient environment. Second, warming decreased the leaf consumption, growth, and survival of S. litura on native S. canadensis populations, but did not affect these traits on invasive S. canadensis populations; warming increased the number of C. marmorata on native S. canadensis populations via direct facilitation, but decreased that on invasive S. canadensis populations via indirect suppression. Third, N addition enhanced the survival of S. litura on native S. canadensis populations, and its feeding preference and leaf consumption on invasive S. canadensis populations. Finally, warming plus N addition exhibited non-additive effects on insect-plant interactions. Based on these results, we tentatively conclude that climate warming could have contrasting effects on insect-plant interactions depending on host-plant provenance and that the effects of atmospheric N deposition on insects might be relatively weak compared to climate warming. Future studies should focus on the molecular mechanisms underlying these different patterns.


Assuntos
Espécies Introduzidas , Solidago , Animais , Spodoptera , Mastigação , Insetos , Plantas
19.
Sci Rep ; 14(1): 5696, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459145

RESUMO

The fall armyworm (Spodoptera frugiperda) is one of the major pest insects in diverse crop plants, including maize, rice, and cotton. While the fall armyworm is native to North and South America, its invasion was first reported in West Africa in 2016. Since then, this species has rapidly spread across Sub-Saharan Africa, Asia, and Oceania, as well as Egypt and Cyprus. The fall armyworm is composed of two sympatric strains, the corn and rice strains, designated to their preferred host plants, in native areas. It remains surprisingly unclear whether invasive fall armyworms belong to the corn strain, rice strain, or hybrids of the two, despite a large number of population genetics studies. In this study, we performed population genomics analyses using globally collected 116 samples to identify the strains of invasive fall armyworms. We observed that invasive fall armyworms are genomically most similar to the corn strain. The reconstructed phylogenetic tree supports the hypothesis that invasive fall armyworms originated from the corn strain. All genomic loci of invasive populations exhibit higher genetic similarity to the corn strains compared to the rice strains. Furthermore, we found no evidence of gene flow from rice strains to invasive populations at any genomic locus. These results demonstrate that invasive fall armyworms belong to the corn strain. These results suggest that invasive fall armyworms likely have very limited potential to infest rice. Therefore, the management plan should primarily focus on crops preferred by the corn strain.


Assuntos
Mariposas , Oryza , Animais , Zea mays , Spodoptera/genética , Filogenia , Produtos Agrícolas
20.
Sci Rep ; 14(1): 6029, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472262

RESUMO

Fall armyworm, Spodoptera frugiperda (FAW) is a cosmopolitan crop pest species that has recently become established in sub-Saharan Africa and Southeast Asia. Current FAW control is almost entirely dependent on synthetic pesticides. Biopesticides offer a more sustainable alternative but have limitations. For example, pyrethrum is an effective botanical insecticide with low mammalian toxicity but is highly UV labile, resulting in a rapid loss of efficacy in the field. Beauveria bassiana is an entomopathogenic fungus that is more persistent, but there is a time lag of several days before it causes insect mortality and leads to effective control. The combination of these biopesticides could mitigate their drawbacks for FAW control. Here we evaluated the efficacy of pyrethrum and B. bassiana as individual treatments and in combination against 3rd instar FAW. Four different combinations of these two biopesticides were tested, resulting in an antagonistic relationship at the lowest concentrations of B. bassiana and pyrethrum (1 × 104 conidia mL-1 with 25 ppm) and an additive effect for the other 3 combined treatments (1 × 104 conidia mL-1 with 100 ppm and 1 × 105 conidia mL-1 with 25 ppm and 100 ppm pyrethrum). Additionally, a delay in efficacy from B. bassiana was observed when combined with pyrethrum as well as a general inhibition of growth on agar plates. These results appear to show that this particular combination of biopesticides is not universally beneficial or detrimental to pest control strategies and is dependent on the doses of each biopesticide applied. However, the additive effect shown here at specific concentrations does indicate that combining biopesticides could help overcome the challenges of persistence seen in botanical pesticides and the slow establishment of EPF, with the potential to improve effectiveness of biopesticides for IPM.


Assuntos
Praguicidas , Piretrinas , Animais , Agentes de Controle Biológico , Larva , Controle de Pragas , Spodoptera/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...